BRI E

Free Al for Detection Engineers &
Security Analysts,
powered by Llama 70b

Key features and capabilities guide v1.0

Questions? Ideas? Join us at Discord Uncoder channel

https://discord.gg/yYd47bA2XV

Rule/Query Generation from a Report with Al

P RIME
Live
Q. Detection Rules Threat Report v ‘ (_‘) \ Microsoft Sentinel Rule ... v Data Schema: Default v & b % BGEE::EF::IE WV
S ® % AlTools v » 0 =@ ® saveas v 650 @
1 Critical Vulnerabilities in Kubernetes Ingress-NGINX 3 "displayName": "Kubernetes Ingress-NGINX Vulnerability Detection",
2 Download 4 "description": "Detects potential exploitation of critical vulnerabilities in
3 History: Kubernetes Ingress-NGINX Controller",
4 5 "severity": "High",
5 25/03/2025 -—- v1.0 -- Initial publication 6 "enabled": true,
6 Summary 7 "query": """
7 0On March 24, 2025, Wiz Research disclosed a set of critical Remote Code Execution 8 let ingress_nginx_vulnerabilities =
vulnerabilities in the Ingress-NGINX Controller for Kubernetes. The vulnerabilities 9 (
CVE-2025-1097, CVE-2025-1098, CVE-2025-24514, and CVE-2025-1974 can be exploited to 10
gain full cluster access, resulting in a complete compromise of the environment [1 11 SecurityEvent
s2l 12 | where EventID = 4688
8 13 | where CommandLine contains "auth-tls-match-cn"
9 The vulnerabilities affect a widely used component in Kubernetes environments 14)
responsible for routing external traffic to internal services. Clusters with 15 or
publicly exposed admission webhooks are at immediate risk. 16 (
10 17
11 Technical Details 18 SecurityEvent
12 The vulnerability CVE-2025-1097, with a CVSS score of 8.8, allows an unauthenticated 19 | where EventID = 4688
remote attacker to inject configuration into nginx using the auth-tls-match-cn 20 | where CommandLine contains "mirror-target" or CommandLine conta‘ns
Ingress annotation. This can lead to arbitrary code execution in the context of the "mirror-host"
ingress-nginx controller, and disclosure of Secrets accessible to the controller. 21) e
(Note that in the default installation, the controller can access all Secrets 22 or ngtxm‘
cluster-wide.) 23 (
13 24
0 Hashes 0 0 URLs O IPs O Emails 0 0/10000 How it works? (4 @

Confidential and Proprietary. Do no

ribute without con

PR =

Rule/Query Generation from a Report with Al

Use case development life cycle may be long, sometimes too long.
Uncoder Al analyzes the provided threat report and generates a rule/query
to detect the described behavior. For this purpose, Uncoder Al uses Llama
3.3 customized for detection engineering and threat intelligence
processing, hosted at SOC Prime SOC 2 Type Il private cloud for maximum
security, privacy, and IP protection.

= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

= Reduces time spent translating threat intelligence into actionable detections
= Enables rapid prototyping of rules

m Allows small teams to cover broader threat landscapes

Rule/Query Generation from a Report with Al

PR ME
56 languages supported
ANOMALI §@ kafka. SIGht<C OcorTExxsiam ©CORTEX xDR AWS Athena S UpeSearch ==DcVO
F::RTINET Q REGEX graylog . DATADOG DNIFy ElastAlert Elastic Stack
“HUNTERS I' LOGPOINT =00 LogRhythm it =ve (O] &%~ ©hawksearch
@Radar T LACEWORK OLOGIQ ?e?gz{g“ Merosot v iGO b B Powershel
Q Qualys GREP RCOTA NErWINESS securoni< Sentinelone 1< snowflake splunk>
g SOL %QLM ystreamAlert sumo logic @ uberhgent Carbon Black.
O onum LOQSIQni ™ suricaTa = @ logz.io % T)'(?DliNDé exabeam

-~ w= Rule/Query Generation with a Custom Al Prompt

Live

® Translate functions with Gpt-40-Mini v ©

Q Detection Rules Custom Prompt v % GENERATE |
L ® | ATosv @ >0 8 >0 @
1 Write 3 Splunk queries to detect activities associated with APT 29 in an environment g *xQuery 1: Detecting suspicious PowerShell activitys#x
where endpoint logging is limited to default Windows audit log 4 [spr

5 index=windows_security EventID=4688

6 | regex "powershell.exe"

7 | search (CommandLine="%Invoke-Command%*" OR CommandLine="xInvoke-Expressionx")

8 | stats count as num_events by ComputerName, UserName, CommandLine

9 | where num_events > 5

16 | sort -num_events

-t

12 This query looks for PowerShell execution events (Event ID 4688) that contain
suspicious command lines, such as “Invoke-Command™ or “Invoke-Expression’, which
are commonly used by APT 29. It then aggregates the results by computer name, user
name, and command line, filtering out instances with fewer than 5 occurrences.

13
14 *%xQuery 2: Identifying potential credential dumping**
15 " spl

16 index=windows_security EventID=4663

17 | regex "lsass.exe"

18 | search (ObjectName="xSAMx" OR ObjectName="%LSAx")

19 | stats count as num_events by ComputerName, UserName, ObjectName
20 | where num_events > 2

21 | sort -num_events

How it works? (& @

DEBUG CONSOLE (1) I

Confidential and Proprietary. [

ribute without consent. €

-~ w= Rule/Query Generation with a Custom Al Prompt

The context and requirements when writing detections may be unique.
Uncoder Al analyzes the provided custom prompt and generates a
rule/query to detect the described behavior taking into account user's
instructions. For this purpose, Uncoder Al uses Llama 3.3 customized
for detection engineering and threat intelligence processing, hosted at
SOC Prime SOC 2 Type Il private cloud for maximum security, privacy,
and IP protection.

m All the capabilities of rule generation from threat report
m Custom instructions allow for generating detections tailored to a particular

environment or context

~~ = Rule/Query's Decision Tree summarization with Al

Live, all tiers

Q_ Detection Rules Elastic Stack Query (EQL) v J & | select Platform v & ‘% TRANSLATE v l
T *4 Al Tools Save As £y Vvalidate » O ot
L)@ + o ® ® v 2 » O B al-generated Decision Tree © O |%
1 from logs-endpoint.events.process-* | keep @timestamp, host.os.type, event.type, event.action,
process.name, process.args, process.command_line, agent.id, host.name | where @timestamp > The Elastic Query (EQL) you've provided is designed to detect potential base64 decoding activities in
now() - 1 hours | where host.os.type = "linux" and event.type = "start" and event.action Linux systems. Here's a breakdown of the decision tree embedded within this query:
= "exec" and ((process.name in ("baseé4", "baseé4plain", "baseé4url", "baseé4mime", eae . .
"baseé4pem"”, "base32", "baselé") and process.command_line like "%-*dx") or (process.name = Inltlal F"te”ng
"openssl" and process.args = "enc" and process.args in ("-d", "-base64", "-a")) or (process 1. Time Frame: The query starts by filtering events from the last hour ((@timestamp > now() - 1
.name like "python*" and (process.args = "baseé4" and process.args in ("-d", "-u", "-t")) hours).
or (process.args = "-c" and process.command_line like "*baseé4x" and process.command_line 2. Linux Events: It then narrows down to only include events where the host operating system is Linux
like "*bé4decode*")) or (process.name like "perl*" and process.command_line like " ((host.os.type == "linux").
*decode_baseé4x") or (process.name like "rubyx" and process.args = "-e" and process 3. Event Type and Action: Further filtering includes only |start | type events with an exec action
.command_line like "xBaseé4.decodeé4*")) | stats cc = count(), agent_count = count_distinct ((event.type == "start" and event.action == "exec")).
(agent.id), host.name = VALUES(host.name), agent.id = VALUES(agent.id) by process.name,
process.command_line | where agent_count = 1 and cc < 15 | sort cc asc | limit 1ae| Speciﬁc Process Detection

The core of the decision tree involves detecting specific processes that could be involved in base64
decoding, categorized by process name. The conditions are as follows:

* Base64 Utilities:

¢ Processes named |[base64 |, | baseb4plain , | base64url), |base64mime |, |base64pem),
base32), or | basel6 .
* These processes must have a command line containing —*d#* , suggesting a decode operation.
* OpenSSL:

¢ The process name is openssl .
« It must be used with the enc argument and either ~d (decode), -base64 , or -a (whichin
some contexts might imply base64 encoding, but here it's part of decoding conditions).
* Pvthon:

Confidential and Proprietary. Do not distribute without consent. € 025. All rights reserved

—~~ = Rule/Query's Decision Tree summarization with Al

When dealing with complex threat detection logic, clarity is a necessity.
Uncoder Al analyzes a query/rule and explains how it works step by step,
with all the embeddings, branches and other intricate logic. For this purpose,
Uncoder Al uses Llama 3.3 customized for detection engineering and threat
intelligence processing, hosted at SOC Prime SOC 2 Type Il private cloud for
maximum security, privacy, and IP protection.

m Specific concise explanations
= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

Rule/Query's Decision Tree summarization with Al

PR ME
48 languages supported in production
ANOMALI §g kafka. SIGht<C OcorTEXxSIAmM O CORTEX XxDR AWS Athena S UpcSearch ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack
#HUNTERS I LOGPOINT 207 LogRhythm S eve (O) gy ©hawksearch
@Radar T LACEWORK OLOGIQ Dafncer Merosoft N IGO N BY Powershel
Q Qualys GREP RCOTA e securonis«< SentinelOne i"o"gsnowﬂoke splunk>
@ SOL %th . yStreamAlert ~ sumo logic - uberAgent Carbon Black.

Rule/Query Full Summary with Al

P RIME
In production
I & % AlTools v &% @ saveas v £ Intelligence H5H 0 @ Eull Al-generated summary ® 0 x
Potential Unconstrained Delegation Discovery Via Get-ADComputer - ScriptBlock X

1 index=* source="WinEventLog:*" AND (ScriptBlockText="#-Properties*TrustedForDelegation*" OR
ScriptBlockText="%-Properties*TrustedToAuthForDelegation*" OR ScriptBlockText="%-Properties*msDS
-AllowedToDelegateTox" OR ScriptBlockText="#-PropertiesxPrincipalsAllowedToDelegateToAccount*" OR
ScriptBlockText="%-LDAPFilterx(userAccountControl:1.2.840.113556.1.4.803:=524288)%")

This Splunk query is designed to search for specific Windows Event Log entries that contain indicators of potential Kerberos

abuse or ation changes. Here's a breakdown of what the query does:

1. Index and Source Filtering: The query starts by specifying index=* which means it searches across all available indexes in the
Splunk environment. It then narrows down the results to only include logs from sources named "WinEventLog:*", indicating that
the focus is on Windows Event Logs.

2. ScriptBlockText Conditions: The main body of the query uses an AND operator with a series of 0R conditions, all related to
ScriptBlockText. This implies the search is looking for PowerShell script blocks (code snippets) within these event logs that
match certain criteria. Specifically, it's searching for any mentions of properties or filters related to Kerberos delegation.

« TrustedForDelegation: This condition searches for instances where a user or computer account has been configured as
trusted for delegation. In a Kerberos environment, this setting allows the account to impersonate users and access services
on their behalf.

TrustedToAuthForDelegation: Similar to the previous condition but specifically related to constrained delegation scenarios
where an account is trusted to authenticate for delegation purposes.

msDS-AllowedToDelegateTo: This attribute specifies the services to which a user or can present del d
credentials. The query looks for modifications or mentions of this attribute in script blocks, indicating possible configuration
changes that could affect delegation paths.

« Princi ! dToDelegateToA t: This targets configurations where specific principals (users, computers,
etc.) are explicitly allowed to delegate their credentials to a particular account, which is another aspect of constrained
delegation.

LDAPFilter with userAccountControl: The final condition searches for LDAP filters used in script blocks that specifically
target accounts with the userAccountControl attribute set to 524288, which corresponds to the
"TRUSTED_FOR_DELEGATION" flag. This flag indicates that an account is trusted for delegation, and modifying or searching
for this could be part of managing or exploiting Kerberos delegation settings.

In summary, this Splunk query aims to detect potential security-related activities or misconfigurations within Windows environments
related to Kerberos 1. It looks for indi s in P script blocks captured in the Windows Event Logs that might
suggest changes to trusted delegation settings, which could be used by attackers to move laterally within a network or by
administrators to manage and audit their environment's delegation configurations.

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved.

PR =

Rule/Query Full Summary with Al

Modern SOC teams need to process large volumes of detection logic. Much
of it is complex, verbose, and time-consuming to understand. Uncoder Al
analyzes rule/query and provides you with a detailed yet clear explanation of
the detection logic and all the fine points involved. For this purpose, Uncoder
Al uses Llama 3.3 customized for detection engineering and threat
intelligence processing, hosted at SOC Prime SOC 2 Type Il private cloud for
maximum security, privacy, and IP protection.

m Clear and structured summary of the detection logic in human language
= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

Rule/Query Full Summary with Al

===
48 languages supported in production

ANOMALI §8 kafka. SIGht<C GcomrreExxsiam O coRTEX xR AWS Athena 5 Search ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack

UNTERS I LOGPOINT =0(7 LogRhythm Pl —= ‘L Googeseauity Qpawksearch
@Radar T LACEWORK OLOGIQ Dafncer Morosoft GO N BY Powersnel

Q Qualys GREP RCOTA e securonis«< SentinelOne i“o,‘gsnowﬂoke splunk>
g SQL %the 9StreamAlert sumo logic - uberAgent Carbon Black.

Query Optimization with Al

PR =

Live, all tiers

Q_ Detection Rules Microsoft Sentinel Query (Kusto) v]

I & 4 AlTools v &3 Save As v S50 W
AlertInfo
| where ServiceSource =~ "Microsoft Defender for Office 365"

AlertEvidence
| where EntityType =="Url"

1
2
3
4
5 | join (
[}
7
8 | project AlertId, RemoteUrl
9

)
10 on AlertId
11 | join (
12 AlertEvidence
13 | where EntityType =="MailMessage"
14 | project AlertId, NetworkMessageId
15)
16 on AlertId
17 t Netw
18 | distinct RemoteUrl, NetworkMessageId
19 | join EmailEvents on NetworkMessageId
20 t € ent 5 1 i
21 | distinct RemoteUrl, NetworkMessageld, RecipientEmailAddress , RecipientObjectId
22 | join kind = inner IdentityInfo on $left.RecipientObjectId == $right.AccountObjectId
23 f e
24 | extend OnPremSid = AccountSID
25 | distinct RemoteUrl, NetworkMessageId, RecipientEmailAddress , RecipientObjectId, OnPremSid
26 t 1t
27 | join kind = inner
28 (DeviceEvents
29 | where ActionType == "BrowserLaunchedToOpenUrl"| where isnotempty(RemoteUrl)
30 | project UrlDeviceClickTime = Timestamp , UrlClickedByUserSid = RemoteUrl,
31 InitiatingPr A tSid, DeviceName, Deviceld, InitiatingProcessFileName

Select Platform v & €5 TRANSLATE

Al-generated Query Optimization ® 0 x

The provided Microsoft Sentinel Query is quite complex and involves multiple joins. To optimize it for better performance (i.e., faster
search speed), I'll provide suggestions to improve its efficiency.
Optimized Query:
AlertInfo
| where ServiceSource =~ "Microsoft Defender for Office 365"
I join C
AlertEvidence
| where EntityType =="Url"
| project AlertId, RemoteUrl
on AlertId
join C
AlertEvidence
| where EntityType =="MailMessage"
| project AlertId, NetworkMessageld
on AlertId
distinct RemoteUrl, NetworkMessageId
join kind=inner EmailEvents on NetworkMessageId
project Id, RecipientEmailAddress, RecipientObjectId
join kind=inner IdentityInfo on $left.RecipientObjectId == $right.AccountObjectId
extend OnPremSid = AccountSID
distinct RemoteUrl, NetworkMessageId, RecipientEmailAddress, RecipientObjectId, OnPremSid
join kind=inner (
DeviceEvents
| where ActionType == "BrowserLaunchedToOpenUrl" and isnotempty(RemoteUrl)
| project UrlDeviceClickTime = Timestamp, UrlClickedByUserSid = RemoteUrl,
InitiatingProcessAccountSid, DeviceName, Deviceld, InitiatingProcessFileName
on $left.OnPremSid == $right.InitiatingProcessAccountSid and $left.RemoteUrl == $right.UrlClickedByUserSid
distinct UrlDeviceClickTime, 1Id, RecipientEmailAddress, RecipientObjectId,
OnPremSid, UrlClickedByUserSid, DeviceName, Deviceld, InitiatingProcessFileName
sort by UrlDeviceClickTime desc

—_

1, Network

—_———————

-

L, Networ

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved.

PR =

Query Optimization with Al

Query performance can become a bottleneck. Uncoder Al analyzes a query
and either confirms it's optimal or suggests performance improvements. For
this purpose, Uncoder Al uses Llama 3.3 customized for detection
engineering and threat intelligence processing, hosted at SOC Prime SOC 2
Type Il private cloud for maximum security, privacy, and IP protection.

m Practical and specific suggestions
m Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

Query Optimization with Al

Confidential and Proprietary. Do not distribute withc

===
48 languages supported in production
ANOMALI §8 kafka. SIGht<C GcomrreExxsiam O coRTEX xR AWS Athena 5 Search ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack
+HUNTERS I/ LOGPOINT =0 LogRhythm = e = (Q) st Shawksearcn
@Radar T LACEWORK OLOGIQ Dafncer Morosoft GO N BY Powersnel
Q Qualys GREP RCOTA e securonis«< SentinelOne i“o,‘gsnowﬂgke splunk>
g SQL %the YStreamAlert sumo logic - uberAgent Carbon Black.

-~ we Rule/Query Short Summary with Al

In production

il ‘4 AlTools v | &% Save As v £} Intelligence 5H 0 @

Potentially Suspicious WDAC Policy File Creation X

1 metadata.event_type = "FILE_CREATION" and target.file.full_path =
/.*\\Windows\\System32\\CodeIntegrity\\.*/ nocase and (((not target.process.file.full_path =
/.*\\Microsoft\.ConfigurationManagement\.exe$/ nocase and not target.process.file.full_path =
/.*\\WDAC Wizard\.exe$/ nocase and not target.process.file.full_path = /.*C:\\Program
Files\\PowerShell\\7-preview\\pwsh\.exe$/ nocase and not target.process.file.full_path = /.*C
:\\Program Files\\PowerShell\\7\\pwsh\.exe$/ nocase and not target.process.file.full_path = /.xC
:\\Windows\\System32\\dllhost\.exe$/ nocase and not target.process.file.full_path = /.xC
:\\Windows\\System32\\WindowsPowerShell\\v1\.0\\powershell_ise\.exe$/ nocase and not target
.process.file.full_path = /.*C:\\Windows\\System32\\WindowsPowerShell\\v1\.0\\powershell\.exe$/
nocase and not target.process.file.full_path = /.*C:\\Windows\\SysWOW64\\dllhost\.exe$/ nocase and

not target.process.file.full_path = /.*C:\\Windows\\SysWOW64\\WindowsPowerShell\\v1\
.0\\powershell_ise\.exe$/ nocase and not target.process.file.full_path = /.%C
:\\Windows\\SysWOW64\ \WindowsPowerShell\\v1\.0\\powershell\.exe$/ nocase)) or ((((not target
.process.command_line = /.*ConvertFrom-CIPolicy -XmlFilePath.%/ nocase) and (not target.process
.command_line = /.%-BinaryFilePath .*/ nocase)) or not target.process.command_line = /.*CiTool
--update-policy.*/ nocase or ((not target.process.command_line = /.xCopy-Item -Path.*/ nocase) and
(not target.process.command_line = /.%-Destination.*/ nocase)))))

Short Al-generated Summary © O X

This Google SecOps Query is designed to detect potential malicious activity related to file creation in the Windows System32 folder,
specifically within the Codelntegrity directory. It filters out known legitimate processes and commands that may create files in this
location, such as those related to Microsoft Configuration Management, WDAC Wizard, PowerShell, and dllhost. The query aims to
identify unauthorized or unexpected file creation events that could indicate a security threat.

Confidential and Proprietary. Do not distribute without conse

)C P

’rime 2 All rights reserved

PR =

Rule/Query Short Summary with Al

When working with third-party content, you often wish you could
understand a query/rule at a glance. Uncoder Al transforms detection
queries/rules into concise human-readable insights. For this purpose,
Uncoder Al uses Llama 3.3 customized for detection engineering and
threat intelligence processing, hosted at SOC Prime SOC 2 Type Il private
cloud for maximum security, privacy, and IP protection.

= "Executive level" summary of the detection logic
= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

Rule/Query Short Summary with Al

===
48 languages supported in production

ANOMALI §8 kafka. SIGht<C GcomrreExxsiam O coRTEX xR AWS Athena 5 Search ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack

UNTERS I LOGPOINT =0(7 LogRhythm Pl —= ‘L Googeseauity Qpawksearch
@Radar T LACEWORK OLOGIQ Dafncer Morosoft GO N BY Powersnel

Q Qualys GREP RCOTA e securonis«< SentinelOne i“o,‘gsnowﬂoke splunk>
g SQL %the 9StreamAlert sumo logic - uberAgent Carbon Black.

-~ = Rule Syntax and Structure Validation with Al

Live

@ Translate functions with Gpt-40-Mini v @

Q. Detection Rules Splunk Query (SPL) v J & { Select Platform v b ’% TRANSLATE v
g (@D 4 AlTools v &% @ saveAs v &y, Vvalidate 50 W o o x
1 index=x source="WinEventLog:x" EventCode=4625 OR EventCode=4624

2 | bin _time span=5m as minute Overall Structure: The query is well-structured and follows a logical sequence of commands. It uses

3 | rex "Security ID:\\s*\\wx\\sx\\wx\\sxAccount Name:\\s*(?<username>.%)\\s*Account Domain:" pipes (/|) to separate each command, which is correct.

4 | stats count(Keywords) as Attempts, count(eval(match(Keywords, "Audit Failure"))) as Failed, C ds and F i

count(eval(match(Keywords, "Audit Success"))) as Success by minute username
where Failed =4
stats dc(username) as Total by minute
where Total>5

1. index=% source="WinEventLog:*" : Correct usage of index and source specifications.

EventCode=4625 OR EventCode=4624 : Correct usage of the OR operator for filtering events.
bin _time span=5m as minute : Correct usage of the \bin command for grouping time
intervals.

4. rex "Security ID:\\s*\\wk\\sx\\wk\\sxAccount Name:\\s*(?
<username>.*)\\s*Account Domain:" : The regular expression seems complex, but it's
correctly formatted and uses a named capture group ((?<username=.*)) to extract the
username.

5.|stats count(Keywords) as Attempts, ... | Correct usage of the [stats | command for

aggregating values.

. \where Failed>=4 and where Total=>5 : Correct usage of the where command for filtering

results.

N o~ >
ORI

o

Field Value Delimiters: The query uses correct field value delimiters, such as double quotes ()

around string values and backticks (") for regex patterns.

Microsoft Sentinel Default Data Schema: The query appears to be using fields that are consistent

with the Microsoft Sentinel default data schema, including EventCode , Keywords ,and _time .

Performance Considerations:

1. The use of index=% may lead to performance issues if the index is very large, as it searches all
indexes.

2. The rex command can be combputationallv exnensive. especiallv with comnlex natterns.

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved.

-~ = Rule Syntax and Structure Validation with Al

Everyone makes mistakes, especially in a rapid rule development environment.
Uncoder Al analyzes the syntax and structure of a rule/query and flags errors,
suggests improvements, or confirms that everything is correct. For this purpose,
Uncoder Al uses Llama 3.3 customized for detection engineering and threat
intelligence processing, hosted at SOC Prime SOC 2 Type Il private cloud for
maximum security, privacy, and IP protection.

= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

m Reduces time spent manually debugging syntax or structural issues to enable
faster iteration and deployment of new detections

m Assists less experienced engineers by offering real-time, contextual feedback
and improvement suggestions

m Flags logic flaws (e.g., overly broad conditions, redundant clauses), not just
syntax

Rule syntax and structure validation with Al

PR ME
56 languages supported
ANOMALI §@ kafka. SIGht<C OcorTExxsiam ©CORTEX xDR AWS Athena S UpeSearch ==DcVO
F::RTINET Q REGEX graylog . DATADOG DNIFy ElastAlert Elastic Stack
“HUNTERS I' LOGPOINT =00 LogRhythm it =ve (O] &%~ ©hawksearch
@Radar T LACEWORK OLOGIQ ?e?gz{g“ Merosot v iGO b B Powershel
Q Qualys GREP RCOTA NErWINESS securoni< Sentinelone 1< snowflake splunk>
g SOL %QLM ystreamAlert sumo logic @ uberhgent Carbon Black.
O onum LOQSIQni ™ suricaTa = @ logz.io % T)'(?DliNDé exabeam

- e Predict ATT&CK Tags in Sigma Rules with ML

RN % AlTools v Save As v {i} Contribute = &y Validate S5 0
1 title: jamaza7ob voke Keyword
2 |id: 63 0508e
Short Summar: [©) .
3 - relate ! Live
4 - ic Full Summary ® 922c356f7
5 Ty Decision Tree [©)
6 status
7 descrj_Query Optimization ® 16 Baseé4 encoded powershell 'Invoke-' calls
8 - referg predict ATT&CK tags 6)
9 - htee=——=——=——="—=-=———=--—-—=-05/09/seo-poisoning-a-gootloader-story/

=
(o]

author: pH-T (Nextron Systems), Harjot Singh, @cyb3rjyo0t
date: 2022-05-20
modified: 2023-04-06

B
N P

[
N

tags:
- attack.t1059.001
- attack.t1027
logsource:

[
IN

[
[$1]

=
o

17 category: process_creation
18 product: windows

19 - detection:

20 selection_img:

21 - Image|endswith:

22 - \powershell.exe

23 - \pwsh.exe

24 - OriginalFileName:

25 - PowerShell.EXE

Confidential and Proprietary. Do not distribute without consent. © SOC P

PR =

Predict ATT&CK Tags in Sigma Rules with ML

MITRE ATT&CK is a widely used framework for detection content, yet
mapping rules to it takes time and training. Uncoder Al uses a privately
hosted ML model to map a provided Sigma rule to ATT&CK techniques
and subtechniques.

= Data doesn't leave SOC Prime's infrastructure
m The model has been trained on over 20,000 Sigma rules, being the largest manually created dataset in
existence
= SOC Prime has unique way of tagging Sigma rules as we have've invented this approach in 2018 and
advocated it since then
= Reduces manual effort in mapping detections to ATT&CK
= Ensuring that detections are systematically aligned to ATT&CK:
o Improves visibility into technique coverage and gaps
o Facilitates better correlation with threat intel, red team findings, and adversary emulation plans
o Helps in structured reporting

PR =

Attack Flow Generation with Al

Open Beta for all

Q. Detection Rules Threat Report v J

e { Select Platform

I & % AlTools v &%

1 Introduction:

3 Security researchers at Seqrite Labs have recently uncovered two distinct campaigns
carried out by the APT group “Kimsuky,” also known as “Black Banshee.” This group
has been actively targeting South Korea using evolving tactics. In these
campaigns, the threat actors delivered two South Korean government-themed
documents as lures, specifically targeting government entities within South Korea

5 1In this blog, we will delve into the technical details of the campaigns uncovered
during our analysis. We will examine the various stages of infection, starting
with a phishing email containing an LNK (shortcut) file attachment. The LNK file
was designed to drop an obfuscated VBA (Visual Basic for Applications) script,
After de-obfuscating the script, we found that it was responsible for dropping
two additional files: One Pdf file and One ZIP file The ZIP file contained four

malicious files: two log files (L), one VBA script ()a), and one
PowerShell script (1.psl). Both campaigns involved the same set of malicious
files.
6
7 Infection Chain:
8
9
10 Fig .1 infection chain
11 Initial Findings:
1 Hashes 0 0 URLs O IPs O Emails 15 16/10000

0=8 Attack Flow

R A

A
P

O |®

GENERATE |
@ ’ % 10C Query M

L0 X

Action - T1566.001 Phishing:
Spearphishing Attachment : Victims
receive spear phishing emails with
malicious zip files (like .zip or .rar).
Confidence: Certainty

leads_to

Action - Execution of obfuscated VBA
script
Download and execution of PowerShell
script

leads_to

Action - Creation of registry entries for
persistence
Use of "L.log' and '1.vbs' files

leads_to

Action - Deobfuscation/Decoding of
files or information

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved

PR =

Attack Flow Generation with Al

Visualization can be a great help in understanding an attack. Uncoder Al analyzes
the provided threat report of other description of malicious activities and visualizes it
in the form of Attack Flow. For this purpose, Uncoder Al uses Llama 3.3 customized
for detection engineering and threat intelligence processing, hosted at SOC Prime
SOC 2 Type Il private cloud for maximum security, privacy, and IP protection.

= Inspired by the open-source Attack Flow project to help defenders move from tracking
individual adversary behaviors to tracking the sequences of behaviors that adversaries employ
to move towards their goals
Data doesn't leave SOC Prime's infrastructure
Reduces the time to understand the attack. On average, generation takes about 2 minutes
Visualized attack flows can directly inform detection rule logic by identifying TTP chains,
enabling proactive defense without relying on IOCs

= When linked to existing telemetry or detection rules, it helps prioritize threats that map to
known gaps or current alerts
Machine-readable MMD export for easier integration with detection engineering workflows
Gives engineers a visual depiction that aids communication with non-technical stakeholders,
management, and executives

https://center-for-threat-informed-defense.github.io/attack-flow/overview/

—_ ..— Al-Assisted Cross-Platform Translation

Live for paid,
final QA for free

Q. Detection Rules Microsoft Sentinel Query (Kusto) v j (_-> { Splunk Query (SPL) v g % TRANSLATE
S B % AlTools v & [saveAs v 50 O Sigma Splunk Query (SPL) A ® saveAs v S50
1 SAPBTPAuditlog_CL 1 source=WinEventLog:* AND hessage?"*malware*" | spath input=} :data output=} ta | eval
2 | where }Hessage] has "malware" ClusterID = coalesce(MessageData.clusterID, ""), Worksnaéem :”coalesce(ﬂessagenata.wsID, nwy
3 | extend MessageData = parse_json(tostring[[Hessage}.data)) hessagej = coalesce(MessageData.message, "") | rex fieldq‘ﬂessage} "user: (?<User>.%*?)\.The following
4 | extend issues were detected: (?<Malware>.*?)" | eval AccountName = split(User, "@")[0], UPNSuffix = split
5 ClusterID = tostring(MessageData.clusterID), (user, "@")[1] | table UpdatedOn, ClusterID, WorkspacelD, fﬂessagd, User, Malware, Tenant, Spaceld,
6 WorkspaceID = tostring(MessageData.wsID), Category, CloudApp="SAP BTP", AccountName, UPNSuffix
7 [Message| = tostring(Data.) 2
8 | parse iﬂessagej with * 'user: ' User '.The following issues were detected: ' Malware ',' * 3
9 | extend 4
10 AccountName = tostring(split(User, '@')[0]), 5
11 UPNSuffix = tostring(split(User, '@')[1])
12 | project
13 UpdatedOn,
14 ClusterID, .
45 WorkspaceID, Howitiworks 2 Rgig @
16 Message), v
17 User, DEBUG CONSOLE (1) A b4
18 Malware,
19 Tenant, [08:49:33] UNMAPPED FIELDS IN SOURCE
20 Spaceld,
21 Category, iessade
22 CloudApp = "SAP BTP",
23 AccountName,
24 UPNSuffix

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved.

PR =

Al-Assisted Cross-Platform Translation

Translating content across security platform languages can become a
nightmare, especially as part of SIEM migration. Uncoder Al translates across
platform-native languages:

= 10 source languages and 21 target languages supported

m Basic query logic translated natively by Uncoder. Advanced function translation
generated by third-party Al (OpenAl's GPT-40-mini model)

m Opt-in use of third-party Al, only advanced functions are sent as part of prompt (we're
in the process of transitioning to a locally hosted Llama model to further improve on
privacy and speed)

= Any unmapped fields and source parts that are not supported by target are listed for
MERIVEIRGCVENY

= Sigma rule generated for each translation to capture the basic logic

Al-Assisted Cross-Platform Translation

PR ME
21 languages supported as target
ANOMALI AWS Athena S Search 0 cORTEX xsiam' (0 CORTEX XDR
F::RTINET grayleg ElastAlert Elastic Stack
“HUNTERS) Fn 207 LogRhythm Crowdstrike
Q@Radar E%%EEE;M Micoson sentinelone (J Sigma

splunk >

10 languages
supported as source

AWS Athena

CrowdStrike

@Radar

Microsoft
Sentinel

S) Search

==)
1 Elastic Stack

L Google Security
Operations

Microsoft
Defender
for Endpoint

splunk>

PR =

Translate from Sigma into 48 Languages

In production

Q Detection Rules Sigma v] (__'> { Splunk Alert (SPL) v e ‘ % TRANSLATE
RO % AlTools v % saveAs v £} Contribute & Validate H 0 W Save As v 0O W
1 title: PowerShell Baseé4 Encoded Invoke Keyword 1; [ﬂPower‘Sheu Baseé4 Encoded Invoke Keywardj
2 id: 6385697e-9f1b-40bd-8817-f4a91f40508e 2 alert.severity =
3 - related: 3 description = Detects UTF-8 and UTF-16 Baseé4 encoded powershell 'Invoke-' calls (Rule ID:
4 - id: fd6e2919-3936-40c9-99db-Baa922c356F7 6385697e-9f1b-40bd-8817-f4a91f40508e) Reference: https://tdm.socprime.com/tdm/info/
5 type: obsolete 4 cron_schedule = 0 * % % %
6 status: test 5 disabled = 1
7 description: Detects UTF-8 and UTF-16 Baseé4 encoded powershell 'Invoke-' calls 6 is_scheduled = 1
8 - references: 7 is_visible = 1
9 - https://thedfirreport.com/2022/05/09/seo-poisoning-a-gootloader-story/ 8 dispatch.earliest_time = -60m@m
10 author: pH-T (Nextron Systems), Harjot Singh, @cyb3rjyet 9 dispatch.latest_time = now
11 date: 2022-05-20 10 search = index=% source="WinEventLog:Microsoft-Windows-Sysmon/Operational® AND
12 modified: 2023-04-06 (((NewProcessName="x\\powershell.exe" OR NewProcessName="x\\pwsh.exe") OR
13 - tags: (OriginalFileName="PowerShell.EXE" OR OriginalFileName="pwsh.dl1")) AND CommandLine="x
14 - attack.execution —e*“ AND (CommandLine="%SQBUAHYAbWBrAGUALQ*" OR CommandLine="xkAbgB2AG8AawBlACOA*" OR
15 - attack.t1859.001 dLine="*JAG4Adg AZQAtAx" OR CommandLine="#*SW52b2t1lL*" OR CommandLine="
16 - attack.defense-evasion *1udm9rZS*“ OR CommandLine="*JbnZva2Utx"))
17 - attack.t1027 11 alert.suppress = 0
18 - logsource: 12 alert.track = 1
19 category: process_creation 13 actions = risk,notable
20 product: windows 14 action.risk = 1
21 - detection: 15 action.risk.param._risk_object_type = user
22 selection_img: 16 action.risk.param._risk_score = 75
23 - Image|endswith: 17 action.correlationsearch = 8
24 - \powershell.exe 18 action.correlationsearch.enabled =
25 - \pwsh.exe 19 action.notable.param.rule_title = PowerShell Baseé4 Encoded Invoke Keyword
26 - OriginalFileName: 20 action.notable.param.rule_description = Detects UTF-8 and UTF-16 Baseé4 encoded | Splunk
27 - PowerShell.EXE 'Invoke-' calls (Rule ID: 6385697e-9f1b-40bd-8817-f4a91f40508¢e)
28 - pwsh.dll 21 action.correlationsearch.label = PowerShell Baseé4 Encoded Invoke Keyword
29 selection_cli_enc: A% hemdd o cnmlalnddstnotnet snnekabineo, i fAibncdeddont s LETAOROL AN ATA00TL)
30 CommandLine|contains: ' -e' How it works? (] @
31 selection cli invoke:

Confidential and Proprietary. Do not distribute without consent

t. © SOC Prime 2025. All rights reserved.

PR =

Translate from Sigma into 48 Languages

Don't get into a vendor lock-in with your security platform. Uncoder Al
natively translates Sigma rues into multiple SIEM, EDR, XDR, and Data
Lake languages.

m Detection portability & scalability across heterogeneous environments

= #1translation engine for Sigma rules — by users, by languages, by features

m Security vendor agnosticism with Sigma as a single source of truth

= Removing translation overhead

m Leveraging large Sigma community for open-source detections

= Full use case life cycle support when combined with Threat Detection
Marketplace

Translate from Sigma into 48 Languages

===
48 languages supported in production
ANOMALI §8 kafka. SIGht<C GcomrreExxsiam O coRTEX xR AWS Athena 5 Search ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack
#UNTERS I/ LOGPOINT =0/ LogRhythm e =ve (O) g™ Shawksearch
@Radar T LACEWORK OLOGIQ Dafncer Morosoft GO N BY Powersnel
Q Qualys GREP RCOTA e securonis«< SentinelOne i“o"gsnowﬂoke splunk>
@ SOL %th . yStreamAlert ~ sumo logic - uberAgent Carbon Black.

-= e Supercharge into Roota

In production

From | Splunk Alert (SPL) v J € SUPERCHARGE ©

[PowerShell Baseé4 Encoded Invoke Keyword]

alert.severity =

description = Detects UTF-8 and UTF-16 Baseé4 encoded powershell 'Invoke-' calls (Rule ID: 6385697e-9f1b-40bd-8817-f4a91f40508e) Reference: https://tdm.socprime.com/tdm/info/
cron_schedule = 0 * * % *

disabled = 1

is_scheduled = 1

is_visible = 1

dispatch.earliest_time = -66m@m

dispatch.latest_time = now

10 search = index=* source="WinEventLog:Microsoft-Windows-Sysmon/Operational” AND (((NewProcessName="x\\powershell.exe" OR NewProcessName="x\\pwsh.exe") OR (OriginalFileName="PowerShell.EXE" OR OriginalFileName="pwsh.dl1")) ANI
Pammandl ina="+ —a+" ANN (Fammandl ina="+QNRUAHVARWRAARIIAI Ne" NR Fammandl ina="+LAhARIACRAIWRT APAAL" NR M dina="+TAR. A7NA+8+" NR Fammandl ine="+QWE27h2+11 +" NR Fammandl ina="+11AmAn7Q+" NP Fammandl ina="+Thn7va2ll+

V0N UN NN

To Roota & Enhance With More Queries ® saveas v [

20 logsource: {}

21 timeline: ''

22 - false-positives: |-

23 Possible False-Positives or Benign Activities for PowerShell Baseé4 Encoded Invoke Keyword

24 1. Legitimate administrative scripts that utilize Baseé4 encoding for obfuscation.

25 2. Third-party applications that use PowerShell for automation and may encode commands in Baseé4.

26 3. Security tools that leverage PowerShell for legitimate purposes, such as endpoint protection or monitoring.

27 4. User-initiated PowerShell scripts that are encoded for ease of transfer or storage.

28 5. Scheduled tasks or cron jobs that execute Baseé4 encoded PowerShell commands for routine maintenance.

29

30 Recommendations to Avoid False-Positives or Benign Activities

31 1. Implement a whitelist of known legitimate scripts and applications that use Baseé4 encoding.

32 2. Monitor the context in which the Baseé4 encoded commands are executed, including user identity and execution time.

33 3. Analyze the content of the decoded Baseé4 strings to determine if they align with known benign activities.

34 4. Correlate PowerShell execution events with other logs (e.g., user activity, file access) to establish a clearer picture of intent.

35 5. Educate users on the risks of using Baseé4 encoding in scripts and encourage the use of clear, readable code.
36 - triage_recommendations: |-
37 Possible Actions for Validating and Investigating Malicious Activity

1. Review logs for PowerShell execution events to identify any suspicious 'Invoke-' calls.
2. Analyze the Baseé4 encoded strings to determine their decoded content and intent.
41 3. Check for unusual patterns or anomalies in the PowerShell command execution history.
4. Correlate the identified PowerShell activity with known threat intelligence to assess potential risks.
=

Tnusetinata +ha caunca af tha dian +a ina 3£ i+ anininatad £nam o lanitimate uean an

Confidential and Proprietary. Do not distribute without consent. @ SOC Prime 2025. All rights reserved.

PR =

Supercharge into Roota

Turn a platform-specific rule or query into a Roota rule and enrich it
with metadata using SOC Prime's proprietary algorithms and Al.

= Al input on possible false positives and triage recommendations (only
metadata is used for prompting)

= Adding possible log sources if they were not specified in the original content.
Additionally, the audit section is filled that specifies what logging service
should be enabled to have the logs required and how to enable it

= Prediction of relevant MITRE ATT&CK techniques and sub-techniques with a

machine learning model

Convenient Detection Code Editor

PR ME
Q. Detection Rules ‘ Sigma v
Rl % AlTools v i saveAs v {i} Contribute &y Validate H 0w
1 title: Rorschach Ransomware Execution Activity
2 id: 0e9e6c63-1350-48c4-9fal-7cch235edc68
3 status: test
4 description: Detects Rorschach ransomware execution activity
5 »| references:
6 - https://research.checkpoint.com/2023/rorschach-a-new-sophisticated-and-fast-ransomware/
7 author: X__Junior (Nextron Systems)
8 date: 2023-04-04
9 modified: 2023-04-22
10 - tags:
11 - attack.execution
12 - attack.t1059.003
13 - command and scr|
14 - attack.tgttack.t1059 #Command and Scripting Interpreter: ATT&CK
15 - detecti|gttack.t1059.001 #Command and Scripting Interpreter: PowerShell: ATT&CK]
16 - logsource: | gttack.t1059.002 #Command and Scripting Interpreter: AppleScript: CK
17 category: attack.t1059.003 #Comma..and Scripting Interpreter: Windows Command She..
18 product: \ gttack.t1059.004 #Command and Scripting Interpreter: Unix Shell:
19 - detection: attack.t1059.005 #Command and Scripting Interpreter: Visual Basic:
20 selection attack.t1059.006 #Command and Scripting Interpreter: Python:
21 Image|el attack.t1059.007 #Command and Scripting Interpreter: JavaScript:
22 - \bcdedit.exe
23 - \net.exe
24 - \netl.exe
25 - \netsh.exe
26 - \wevtutil.exe
27 - \vssadmin.exe
28 CommandLine|contains: '11111111'
29 condition: selection
30 - falsepositives:
31 - Unlikely

In production

Confidential and Proprietary. Do not distribute without consent. © SOC Prime 2025. All rights reserved.

PR =

Convenient Detection Code Editor

Uncoder Al is an IDE for detection engineering. Any IDE starts with
a convenient code editor.

= Language-specific syntax highlighting

m Automatic language detection

= Sigma and Roota templates

= Upload from file

m Code autocomplete including MITRE ATT&CK and log sources from all

Sigma rules in Threat Detection Marketplace

-— e Search Threat Detection Marketplace

In production

Q. Detection Rules X
Platform Repositories < Platform Repos My Repos ~ HOT OSINT Indicators

Select All Possible RDP Resource Redirection Patterns (via file_event)
Author: SOC Prime Team

SOC Prime
Possible Rogue RDP via Outlook Attachment (via file_event)

Roota Author: SOC Prime Team

Threat Bounty Possible Msedge Dynamic Library Side-Loading Attempt (via image_load)
Author: SOC Prime Team

SigmaHQ/sigma
Possible Screen Capture (via powershell)

Azure/Azure-Sentinel Author: SOC Prime Team

Community Possible Microsoft Console File Created In Unusual Folder (via file_event)

Author: SOC Prime Team
Active Threat I0Cs

Possible EDR Disablemenet Attempt Using WDAC (via file_event)
Blitzkrieg/sigma-rules Author: SOC Prime Team

The-DFIR-Report/Sigma-Rules

e (- 1-100f82 10 < 1 2 3 4 5 9 >

Confidential and Proprietary. Do not distribute without consent. © £

PR =

Search Threat Detection Marketplace

Search Threat Detection Marketplace content right from Uncoder Al.
Supports both platform and custom repositories. Threat Detection
Marketplace is the world's largest repository of public, private and
Threat Bounty-made detection rules and queries, indexing over 15
open-source repos, and sporting over 500,000 detection rules in 48
languages. Every rule that exists is in Threat Detection Marketplace, as
long as its author's license permitted that.

m Easily find detections for task at hand
m Conveniently open custom rules

m Discover ideas and inspiration for detection content

