BRI E

Rule/Query's Decision Tree
summarization with Al

Uncoder Al

~~ = Rule/Query's Decision Tree summarization with Al

In production

Q_ Detection Rules Elastic Stack Query (EQL) v J & | select Platform v & ‘% TRANSLATE v l
T *4 Al Tools Save As £y Vvalidate » O ot
L)@ + o ® ® v 2 » O B al-generated Decision Tree © O |%
1 from logs-endpoint.events.process-* | keep @timestamp, host.os.type, event.type, event.action,
process.name, process.args, process.command_line, agent.id, host.name | where @timestamp > The Elastic Query (EQL) you've provided is designed to detect potential base64 decoding activities in
now() - 1 hours | where host.os.type = "linux" and event.type = "start" and event.action Linux systems. Here's a breakdown of the decision tree embedded within this query:
= "exec" and ((process.name in ("baseé4", "baseé4plain", "baseé4url", "baseé4mime", eae . .
"baseé4pem"”, "base32", "baselé") and process.command_line like "%-*dx") or (process.name = Inltlal F"te”ng
"openssl" and process.args = "enc" and process.args in ("-d", "-base64", "-a")) or (process 1. Time Frame: The query starts by filtering events from the last hour ((@timestamp > now() - 1
.name like "python*" and (process.args = "baseé4" and process.args in ("-d", "-u", "-t")) hours).
or (process.args = "-c" and process.command_line like "*baseé4x" and process.command_line 2. Linux Events: It then narrows down to only include events where the host operating system is Linux
like "*bé4decode*")) or (process.name like "perl*" and process.command_line like " ((host.os.type == "linux").
*decode_baseé4x") or (process.name like "rubyx" and process.args = "-e" and process 3. Event Type and Action: Further filtering includes only |start | type events with an exec action
.command_line like "xBaseé4.decodeé4*")) | stats cc = count(), agent_count = count_distinct ((event.type == "start" and event.action == "exec")).
(agent.id), host.name = VALUES(host.name), agent.id = VALUES(agent.id) by process.name,
process.command_line | where agent_count = 1 and cc < 15 | sort cc asc | limit 1ae| Speciﬁc Process Detection

The core of the decision tree involves detecting specific processes that could be involved in base64
decoding, categorized by process name. The conditions are as follows:

* Base64 Utilities:

¢ Processes named |[base64 |, | baseb4plain , | base64url), |base64mime |, |base64pem),
base32), or | basel6 .
* These processes must have a command line containing —*d#* , suggesting a decode operation.
* OpenSSL:

¢ The process name is openssl .
« It must be used with the enc argument and either ~d (decode), -base64 , or -a (whichin
some contexts might imply base64 encoding, but here it's part of decoding conditions).
* Pvthon:

Confidential and Proprietary. Do not distribute without consent. € 025. All rights reserved

—~~ = Rule/Query's Decision Tree summarization with Al

When dealing with complex threat detection logic, clarity is a necessity.
Uncoder Al analyzes a query/rule and explains how it works step by step,
with all the embeddings, branches and other intricate logic. For this purpose,
Uncoder Al uses Llama 3.3 customized for detection engineering and threat
intelligence processing, hosted at SOC Prime SOC 2 Type Il private cloud for
maximum security, privacy, and IP protection.

m Specific concise explanations
= Multiple languages supported

m Data doesn't leave SOC Prime's infrastructure

Rule/Query's Decision Tree summarization with Al

PR ME
48 languages supported in production
ANOMALI §g kafka. SIGht<C OcorTEXxSIAmM O CORTEX XxDR AWS Athena S UpcSearch ==DcVO
F::RATINET e REGEX graylog . pATADOG DNIAY ElastAlert == Elastic Stack
#HUNTERS I LOGPOINT 207 LogRhythm S eve (O) gy ©hawksearch
@Radar T LACEWORK OLOGIQ Dafncer Merosoft N IGO N BY Powershel
Q Qualys GREP RCOTA e securonis«< SentinelOne i"o"gsnowﬂoke splunk>
@ SOL %th . yStreamAlert ~ sumo logic - uberAgent Carbon Black.

